翻訳と辞書
Words near each other
・ Lidzbark Warmiński
・ Lidzbark-Nadleśnictwo
・ Lidziya Marozava
・ Lidé na kře
・ Lidérc
・ Lidó Rico
・ Lidón
・ Lie
・ Lie (disambiguation)
・ Lie (song)
・ Lie (surname)
・ Lie (T-ara song)
・ Lie a Little Better
・ Lie About Us
・ Lie algebra
Lie algebra bundle
・ Lie algebra cohomology
・ Lie algebra extension
・ Lie algebra representation
・ Lie algebra-valued differential form
・ Lie algebroid
・ Lie Back and Enjoy It
・ Lie Back and Think of England
・ Lie bialgebra
・ Lie bialgebroid
・ Lie bracket of vector fields
・ Lie Cliff
・ Lie coalgebra
・ Lie conformal algebra
・ Lie derivative


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Lie algebra bundle : ウィキペディア英語版
Lie algebra bundle
In mathematics, a weak Lie algebra bundle
: \xi=(\xi, p, X, \theta)\,
is a vector bundle \xi\, over a base space ''X'' together with a morphism
: \theta : \xi \otimes \xi \rightarrow \xi
which induces a Lie algebra structure on each fibre \xi_x\, .
A Lie algebra bundle \xi=(\xi, p, X)\, is a vector bundle in which
each fibre is a Lie algebra and for every ''x'' in ''X'', there is an open set U containing ''x'', a Lie algebra ''L'' and a homeomorphism
: \phi:U\times L\to p^(U)\,
such that
: \phi_x:x\times L \rightarrow p^(x)\,
is a Lie algebra isomorphism.
Any Lie algebra bundle is a weak Lie algebra bundle, but the converse need not be true in general.
As an example of a weak Lie algebra bundle that is not a strong Lie algebra bundle, consider the total space \mathfrak(3)\times\mathbb over the real line \mathbb. Let () denote the Lie bracket of \mathfrak(3) and deform it by the real parameter as:
:()_x = x\cdot()
for X,Y\in\mathfrak(3) and x\in\mathbb.
Lie's third theorem states that every bundle of Lie algebras can locally be integrated to a bundle of Lie groups. However globally the total space might fail to be Hausdorff.〔A. Weinstein, A.C. da Silva: ''Geometric models for noncommutative algebras, 1999 Berkley LNM, online readable at (), in particular chapter 16.3.〕
==References==

*A.Douady et M.Lazard, Espaces fibres en algebre de Lie et en groups, Invent. math., Vol. 1, 1966, pp. 133–151
*B.S.Kiranagi, Lie Algebra bundles, Bull. Sci. Math., 2e serie, 102(1978), 57-62.
*B.S.Kiranagi, Semi simple Lie algebra bundles, Bull. Math de la Sci. Math de la R.S.de Roumaine, 27 (75), 1983, 253-257.
*B.S.Kiranagi and G.Prema, On complete reducibility of Module Bundles, Bull. Austral. Math Soc., 28 (1983), 401-409.
*B.S.Kiranagi and G.Prema, Cohomology of Lie algebra bundles and its applications, Ind. J. Pure and Appli. Math. 16(7): 1985, 731/735.
*B.S.Kiranagi and G.Prema, Lie algebra bundles defined by Jordan algebra bundles, Bull. Math. Soc.Sci.Math.Rep.Soc. Roum., Noun. Ser. 33 (81), 1989, 255-264.
*B.S.Kiranagi and G.Prema, On complete reducibility of Bimodule bundles, Bull. Math. Soc. Sci.Math. Repose; Roum, Nouv.Ser. 33 (81), 1989, 249-255.
*B.S.Kiranagi and G.Prema, A decomposition theorem of Lie algebra Bundles, Communications in Algebra 18 (6), 1990, 1869-1877 .
*B.S.Kiranagi, G.Prema and C.Chidambara, Rigidity theorem for Lie algebra Bundles, Communications in Algebra 20 (6), 1992, pp. 1549 – 1556.
*.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Lie algebra bundle」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.